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Abstract. This paper presents an approach on mining most specific
workflow models from event-based data. The approach is embedded in
the context of data mining and knowledge discovery in databases. It con-
sists of two parts. The first one is an introduction of a block-structured
workflow model representation and the second one is an extraction proce-
dure for workflow models based on that model representation. This paper
describes both parts in detail and also outlines preceding and subsequent
steps.

1 Introduction

Today, workflow management systems are applied in many organizations. Set-
ting up and maintaining a workflow management system require workflow mod-
els which prescribe how business processes should be managed by the system.
Typically, the user is required to provide these models. Constructing process
models from scratch is a difficult and error-prone task that often requires the
use of an expert. An alternative way to construct workflow models from scratch
is to extract them from event-based data captured in form of logs from running
business processes. The goal of workflow mining is to extract workflow models
for business processes from such logs.

In this paper we present an approach on mining most specific workflow mod-
els. A model is considered to be most specific according a given log if it is
complete and minimal. Completeness describes that a model should preserve all
the dependencies between activities that are present in the log. Minimality as-
sures that the model should neither introduce paths of execution nor spurious
dependencies between activities which are not present in the log.

Let us assume that the execution of process instances from which we have
captured a log is controlled by knowledge that only the actors have in mind.
This process-related knowledge is called the implicit model. In case that a log
does not cover all possible ways of executing a process, the mined workflow
model may be different from the implicit model due to the fact that it contains
dependencies between activities which are not part of the implicit model. The
obvious limitation of mining workflow models is that the quality of a mined
model, with respect to its implicit model, depends on how much the log covers



the implicit model. Also, its characteristic to be most specific can only be related
to the log, not to the implicit model itself.

The rest of the paper is organized as follows. The following section outlines
the context in which our approach is embedded. In section 3 we define the
input. A workflow model representation is outlined in section 4. In section 5
we describe our mining process in detail, followed by a short description of
engineering the output in section 6. An experimental evaluation is outlined in
section 7. Subsequently, we discuss related work and conclude the paper with a
summary.

2 Mining Framework

We consider the mining of workflow models from event based data to be a process
of knowledge discovery in databases (KDD)[1]. A KDD process roughly consists
of the following steps: data consolidation, selection and preprocessing, data min-
ing, interpretation and evaluation. In this paper, we focus on the data mining
step and its interfaces to the preceding and subsequent steps.

Generally, data mining consists of two tasks. The first task is to define a
model representation. Based on this the second task is the extraction of models
from data using appropriate algorithms. Workflow mining can be considered
a data mining method that uses a particular workflow meta-model as model
representation and specialized algorithms for extracting workflow models from
logs. The interfaces of the workflow mining step to its preceding and subsequent
steps are given by a definition of its input and a transformation of its output.

3 Defining the Input

Monitoring process instances provides a large amount of data of different events
that occur while an instance is being executed. Because we are interested in
extracting models that describe control flows between activities within processes
we consider events which are related to the life cycle of an activity.

Let us use the finite state machine depicted in Figure 1 to describe the life
cycle of an activity. In this paper, we focus on two kinds of events: Start and
Complete. An event of kind Start marks the transition from the state Scheduled
into the the state Active. An event of kind Complete marks the transition from
the state Running into the state Completed.

For each activity captured in form of a pair of Start and Complete events we
distinguish its type, occurrence, and instance. Two activities of the same type, i.e.
the same kind of activity, are differentiated into multiple occurrences if they are
embedded in different contexts. The context of an activity is defined by the set
of other activities for which a precedence relation to that activity exists. Often,
it is enforced that each activity within the same process is named differently. In
this case we capture exactly one occurrence per activity. We capture an activity
occurrence that is executed at least ones, i.e. we get one activity instance. We
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Fig. 1. Finite state machine for the life cycle of an activity

read multiple instances of an activity occurrence if it is performed repeatedly,
e.g. inside a loop.

We log an instance of a business process executed under the control of a
monitoring tool in form of a trace. A trace consists of a set of events of the life
cycle of each activity performed inside a particular process instance. It is defined
as follows.

Definition 1. Let e = (c, o, i, s, t) denote an event of starting or completing the
instance i(i ∈ N) of an activity occurrence o at the logical point in time t(t ≥ 1)
as part of executing a process instance c, where s ∈ {Start, Complete} is called
stereotype of e. A trace E(c) = ({e = (c′, o, i, s, t) | c′ = c}, <t) is the set of all
events of an instance c ordered by time, where every event has a unique t.

Mining a model for a business process is based on a set of traces, called the
log of the business process. A log is defined as follows.

Definition 2. Let C(p) = {c1, . . . , cn} be a set of instances for a particular
business process p. A log L(p) = {E(c) | c ∈ C(p)} is a set of traces captured for
p.

For a particular business process we select the traces into a log. Before we
can start mining we check the log in order to detect inconsistencies. We expect
each activity instance in each trace to have exactly one event of stereotype Start
and one event of stereotype Complete, such that each Start event comes always
before the corresponding Complete event. Inconsistent traces are eliminated.

4 Model Representation

The model representation, i.e. the meta-model the extracted workflow models
are based on, is a block-oriented model. It defines that each workflow model
consists of an arbitrary number of nested building blocks. Building blocks are
differentiated into operators and terms. Operators combine building blocks and



define the control flow of a workflow model. Basic terms are references for activity
occurrences or sub-workflows that are embedded into a control flow. We use
references to activity occurrences instead of activity occurrences because this
allows us to have partial synchronization for an activity occurrence.

We build a block-structured model top-down by setting one operator as start-
ing point of the workflow model and nest other operators until we get the desired
control flow structure. At the bottom of this structure we embed basic terms into
operators and terminate the nesting process. Therefore, each process model can
be represented in form of a tree whose leafs are always operators. Beside the tree
representation of block-structured models we can write them in form of terms.
Furthermore, block-structured models can be represented in form of diagrams,
too. Block-structured models have some advantages: They are well-formed and
always sound. Therefore, using this kind of meta-model we are sure that the
extracted workflow models do not contain any deadlocks or other anomalies.

Fig. 2. A simple process model

In this paper we use a basic block-oriented meta-model that consists of ac-
tivity occurrence references as basic terms and n-ary operators for sequences,
parallels, and alternatives. The Sequence operator defines that all embedded



blocks are performed in a sequential order. Let S denote the Sequence operator
and let a and b denote two activity occurrence references, then S(a, b) is a work-
flow model defining that activity a is performed before activity b. In contrast,
the Parallel operator defines that all embedded blocks can be executed in par-
allel, i.e. that no precedence relation exists between the embedded blocks. Let
P denote the Parallel operator, and let a and b denote two activity occurrence
references, then P(a, b) is a workflow model defining that activity a and activity
b can be performed independently, i.e. in any order or in parallel. The Alterna-
tive operator defines a choice of exactly one block out of all its embedded blocks.
This operator is supplemented by a set of rules determining the choice. Let A
denote the Alternative operator, and let a and b denote two activity occurrence
references, then A(a, b) is a workflow model defining that either activity a or
activity b is executed. Additionally, we define a Loop operator L. The Loop op-
erator contains only one block that is executed repeatedly until its loop condition
holds.

For example, Figure 2 shows the process model A(P(S(a, b), (c, d)),S(P(c,
S(b, a)), d)) in form of a diagram. The root of this model is a alternative operator
that contains all other blocks in a hierarchical manner, such that all activity
occurrence references are embedded in a nested control flow.

For our meta-model we define an algebra that consists of a set of axioms
covering distributivity, associativity, commutativity, and idempotency. These
axioms are the basis of term rewriting systems that can be used in order to
transform workflow models. A set of basic axioms used by our workflow mining
approach is shown in Table 1. Associativity is defined for all operators (A2, A5,
A8). Distributivity is defined in form of left distributivity of the Sequence op-
erator over the Alternative operator (A4), and in form of full distributivity of
the Parallel operator over the Alternative operator (A7). Note that this algebra
does not contain an axiom for the right or full distributivity of the Sequence op-
erator over the Alternative operator because this would lead to different models
depending on the time a decision is made. Commutativity of embedded blocks
is defined for Alternative and Parallel operators (A1, A6). Idempotency is only
defined for the Alternative operator (A3).

A1: A1(x1, . . . , xn) = · · · = An!(xn, . . . , x1)
A2: A(. . . , x1, . . . , xn, . . . ) = A(. . . , A(x1, . . . , xn), . . . )
A3: A(x, x, . . . ) = x
A4: S(A(x1, . . . , xn), y1, . . . , ym) =

A(S1(x1, y1, . . . , ym), . . . ,Sn(xn, y1, . . . , yn))
A5: S(. . . , x1, . . . , xn, . . . ) = S(. . . ,S(x1, . . . , xn), . . . )
A6: P1(x1, . . . , xn) = · · · = Pn!(xn, . . . , x1)
A7: P(A(x1, . . . , xn), y1, . . . , ym) =

A(P1(x1, y1, . . . , ym), . . . ,Pn(xn, y1, . . . , yn))
A8: P(. . . , x1, . . . , xn, . . . ) = P(. . . , P (x1, . . . , xn), . . . )

Table 1. Basic algebra



The basic meta-model can be supplemented with further operators and basic
terms. For example, one can define a Parallel operator that controls the order
of starting its embedded blocks as well as a non-exclusive Alternative operator.
Also, an basic term that represents sub-processes may be defined. In this paper
we use only the basic meta-model outlined above.

5 Mining Workflow Models

In the previous sections we have defined the input of the mining process and a
model representation. Now, we can describe how to mine most specific workflow
models from input. Our mining process consists of five steps which are performed
on a log L(p) for a process p in sequential order. Following, each step is described
in the order of application.

5.1 Labeling Multiple Activity Instances

A trace may contain events for multiple instances of the same activity occurrence.
These instances result from executing an activity occurrence repeatedly within a
process instance. Due to the fact that a workflow model only contains references
for activity occurrences, we now substitute each instance of a set of multiple
instances by a single instance of an activity occurrence. For this purpose we
define the following labeling operator.

Definition 3. Let E(c) denote a trace, E(c) ∈ L(p). The operator ζ : E → E,

ζ(e) =

{
e : |{e′ | e, e′ ∈ E(c) ∧ e′.o = e.o ∧ e′.s = e.s}| = 1
(c, k, 1, s, t) : otherwise, where k = o ◦ i represents a concatination

is called labeling operator.

The labeling operator is applied to each event in each trace of the log L(p).
It transforms events, such that each instance of a set of multiple instances of an
activity occurrence within a particular E(c) is represented by a single instance
of an activity occurrence that is artificially differentiated by the label k = o ◦ i.

5.2 Grouping Traces into Classes

In this step, we group traces of a log into trace classes. The way of grouping
depends on the meta-model. For the basic meta-model the building of trace
classes is defined as follows.

Let us consider a trace. Its sequence of events can be splitted into alter-
nating subsequences which only contain events of the same stereotype. Each
subsequence is called a cluster of the trace.



Definition 4. Let γ(E(c)) = {E(c)+1 , E(c)−1 , E(c)+2 , . . . , E(c)−q } denote the clus-
tering of E(c), where E(c)+1 is the first set of subsequent events of stereotype
Start, E(c)−1 is the first set of subsequent events of stereotype Complete, and so
on.

The type of an event is a tuple containing the activity occurrence and the
stereotype. For the basic meta-model we define the equivalence of traces as
follows.

Definition 5. Let κ : {(C,O,N, S, T )} → {(O, S)}, with κ(e) = (e.o, e.s), de-
note a projection on event e, where o denotes the activity occurrence of e and s
denotes its stereotype. κ(e) is called the type of e. Two events e and e′ are equiv-
alent, e ≡ e′, iff they have the same type, κ(e) = κ(e′). Two traces E(c) and
E(c′) are equivalent, E(c) ≡ E(c′), iff clusters at the same position contain the
same subset of equivalent events, ∀E(c)+/−

i ∈ γ(E(c)), ∀E(c′)+/−
i ∈ γ(E(c′)) :

{κ(e) | e ∈ E(c)+/−
i } = {κ(e′) | e′ ∈ E(c′)+/−

i } ⇔ E(c) ≡ E(c′).

Note, that the order of events within a cluster is not relevant. A trace class
can now be defined as an ordered set of clusters that contains the event types of
its member traces.

Definition 6. Let ρ(p)h denote a part {E(c1), . . . E(cm)|E(c1) ≡ · · · ≡ E(cm)}
of equivalent traces of a partition of L(p) based on the equivalence relation E(c) ≡
E(c′). Dh = {U+

1 = {κ(e) | e ∈ ∪E(ci)+1 }, U−
1 = {κ(e) | e ∈ ∪E(ci)−1 }, . . . , U−

q =
{κ(e) | e ∈ ∪E(ci)−q } | ∀E(ci) : E(ci) ∈ ρ(p)h, 1 ≤ i ≤ |ρ(p)|} is the trace class

of ρ(p), where U
+/−
l , 1 ≤ l ≤ q, denote the clusters of event types.

For a log L(p) we can now determine the partition D(L(p)) whose parts
are trace classes (Dh)1≤h≤l consisting of equivalent traces. The number of trace
classes for D(L(p)) depends on the variability of the process instances captured
in L(p). It ranges from 1 to the number of traces.

5.3 Extracting Precedence Relations

For each trace class Dh, Dh ∈ D(L(p)), we now extract a precedence relation.
It relates two event types for which we detect a dependency.

Algorithm 1. Let Rh = {(o, o′) | o ∈ O ∪ α, o′ ∈ O} denote the precedence
relation for Dh, where α is an initiating activity occurrence that marks the
start of a process. Let R(L(p)) = (Rh)1≤h≤k denote the family of all prece-
dence relations for D(L(p)). Let µ : U → {o | (o, s) ∈ U} be a projection
function that returns all activity occurrences of the event types of a cluster U .
Let ϕ : U → {Start, Complete} denote a function that returns the stereotype of
a cluster U . S is a set. Input: D(L(p)).



For each Dh, Dh ∈ D(L(p)) {
Rh := ∅
S := α

For each U
+/−
i , U

+/−
i ∈ Dh, i = 1, . . . , q {

If ϕ(U+/−
i ) = Start {

Rh := Rh ∪ {(o, o′)|o ∈ S, o′ ∈ µ(U+
i )}

}
Else { S := S ∪ µ(U−

i ) }
}

}
R(L(p)) = R(L(p)) ∪Rh

}
Return R(L(p))

Algorithm 1 shows that we use transitive dependencies between activity oc-
currences, e.g. ∀o, o′, o′′ ∈ ⋃

µ(Ui), Ui ∈ Dh : (o, o′) ∈ Rh ∧ (o′, o′′) ∈ Rh ⇒
(o, o′′) ∈ Rh. Also note that we extract the precedence relation for each trace
class separately.

Example 1. Let D1 = {{(a, Start), (c, Start)}, {(a,Complete)}, {(b, Start)}, {(c,
Complete)}, {(d, Start)}, {(b, Complete), (d,Complete)}}, D2 = {{(a, Start),
(c, Start)}, {(c, Complete)}, {(d, Start)}, {(a,Complete)}, {(b, Start)}, {(b,
Complete), (d, Complete)}}, and D3 = {{(c, Start), (b, Start)}, {(c, Complete),
(b, Complete)}, {(a, Start)}, {(a,Complete)}, {(d, Start)}, {(d, Complete)}} be the
trace classes for a log. Figure 3 shows the precedence relations Ri that is ex-
tracted from Di by applying Algorithm 1.
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Fig. 3. Graphs of example precedence relations

At this point the relations in R(L(p)) may contain pseudo dependencies.
Pseudo dependencies are dependencies which actually do not exist in the im-
plicit model. They occur randomly and are caused by random execution times
or delays. For example, activities which are embedded in parallel sequences are
often performed in a pseudo sequential order due to the fact that they are embed-
ded in opposite ends of their sequences. In order to detect pseudo dependencies
in relations we group together all relations which have the same set of activity



occurrences. The main indicator to decide whether a dependency is real or spu-
rious is that a pseudo dependency is a dependency that is not found in every
relation of such a group. We use the following algorithm for pseudo dependency
detection and elimination.

Algorithm 2. Let β : R → {o | (o, o′) ∈ R ∨ (o′, o) ∈ R} denote a function
which returns the set of activity occurrences of a relation R. Let Bj denote a
part of a partition of (R(L(p)) that is defined by the equivalence relation β(R) =
β(R′) ⇔ R ≡ R′. Let φ : R → R′ denote a function that computes the transitive
reduction of a precedence relation. U, V are sets of relations; u, v are sets. Input:
R(L(p)).

For each Bj{
U := Bj

While |U | > 0 {
v := R1, V := R1, R1 ∈ U
U := U \R1

For each Ri, Ri ∈ U {
u := R1 ∩Ri

If β(u) = β(R1) {
V := V ∪Ri

U := U \Ri

v := v ∩Ri

}
}

R(L(p)) := R(L(p)) \ V
R(L(p)) := R(L(p)) ∪ φ(v)
}

}
Return R(L(p))

Algorithm 2 returns the adjusted precedence relations R′(L(p)) describing
each alternative path of executing the process p as it was captured in L(p).
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Fig. 4. Graphs of adjusted precedence relations



Example 2. Applying Algorithm 2 on R(L(p)) = {R1, R2, R3} from Example 1
results in R′(L(p)) = {R1, R2} which is depicted in Figure 4. Note that R1 and
R2 from R(L(p)) are merged into R1 of R′(L(p)).

5.4 Model Synthesis

In this step we generate an initial model for p from R′(L(p)). First, we generate
a sub-model for each path represented by a precedence relation Rh ∈ R(L(p)).
Then, a model for the overall workflow is assembled from all sub-models. We use
algorithm 3 that handles both task.

Algorithm 3. Let f(Rh) = {αo1, o1o2, . . . , ok−1ok}, ok ∈ {o | (o, o′) /∈ Rh ∧
(o′, o) ∈ Rh}, denote a path in Rh starting at α and ending at an activity occur-
rence ok that do not have any successor. Let F (R) = {f(Rh)} denote the set of
paths for R(L(p)). Let η : f(Rh) → {o | ((o, o′) ∈ f(Rh) ∨ (o′, o) ∈ f(Rh)) ∧ o 6=
α} denote a function that returns all activity occurrences of a path in ascending
order. Let ψ : O → A be a function that returns an unique activity occurrence
reference for an activity occurrence. sbn and bm are variables of type block.
Input: R(L(p)).

For each Rh, Rh ∈ R(L(p)){
For each fi(Rh), fi(Rh) ∈ F (R) {

sbi := S(ψ(o1), ψ(o2), . . . ), oj ∈ η(fi(Rh)), 1 ≤ j ≤ |η(fi(Rh))|
}
bh := P(sb1, . . . , sbn)

}
Return A(b1, . . . , bm)

We apply algorithm 3 on R(L(p)). It results an initial model M(L(p)) in the
form A(P(S(. . . ), . . . ), . . . ).

Example 3. Applying Algorithm 3 on R′(L(p)) from Example 2 results in the
model A(P(S(a, b), (c, d)),S(P(c,S(b, a)), d)) depicted in Figure 2.

5.5 Model Transformation

In this step we transform the initial model into a consolidated and anticipative
form. For this purpose we use three different kinds of transformations. First, we
detect loops and complete the model with appropriate loop operators. Second,
we merge parallel paths in the model by applying a term rewriting system. Third,
we change the decision structure of the model in order to make it an anticipatory
model.

In section 5.1 we used a labeling operator to artificially differentiate multiple
instances of an activity occurrence within a case. Actually, we want to have loop
operators containing activity occurrences for those occurrences. At this point we
construct loop operators for the labeled occurrences.



Algorithm 4. Let Π(S) denote a minimal partition of the activity occurrence
references in a sequence S(a, a′, . . . ), so that for each part π the following holds:
∀a, a′, ψ−1(a) = o ◦ i, ψ−1(a′) = o ◦ j : a ∈ π ⇒ a′ ∈ π ∧ ∀a, a′, a′′, a′′′ ∈
π, ψ−1(a) = o ◦ i, ψ−1(a′) = o ◦ j, ψ−1(a′′) = o ◦ (i + 1), ψ−1(a′′′) = o ◦ (j + 1) :
a < a′ < a′′ < a′′′. Let θ : π → (o, o′, . . . ) denote a function that returns the
sequence of all activity occurrences in the order in which their first occurrence is
found in π, and let Ψ : (o, o′, . . . ) → (ψ(o), ψ(o′), . . . ) be a function that returns a
sequence of activity occurrence references for a sequence of activity occurrences.
Let ξ : A → {0, 1} denote a function that returns 1 iff a is a reference for a
labeled activity occurrence, and 0 otherwise. Input: M(pj).

∀Si ∈ M {
a¦ := first labeled a in Si

a4 := last labeled a in Si

Split S into Sp, Sb, Sp where
Sp := S(a, . . . , a′), a′ < a¦
Sb := S(a′′, . . . ), ∀a : a¦ < a < a4 ∧ ξ(a) = 0
Sl := S(a¦, a′′′, . . . , a4),∀a : ξ(a) = 1
Ss := S(a′′′′, . . . ), a′′′′ > a4

Determine Π(Sl)
For each πk, πk ∈ Π(Sl){

bk = L(Sk(Ψ(θ(πk))))
}

S := S(Sp,P(Sb, b1, . . . , bl), Ss)
}

After constructing loops we merge sequences and loops, respectively, em-
bedded in parallel operators by applying a term rewriting system (TRS1) that
consists of the following rewritings:

P(S(b1, . . . , bu, bu+1, . . . , bv), . . . ,S(b1, . . . , bu, b′u+1, . . . , bw)) →
S(b1, . . . , bu,P(S(bu+1, . . . , bv), . . . ,S(b′u+1, . . . , b

′
w))

P(S(b′1, . . . , b
′
u, bu+1, . . . , bv), . . . ,S(b′1, . . . , b

′
u, bu+1, . . . , bw)) →

S(P(S(b1, . . . , bu), . . . ,S(b′1, . . . , b
′
u), bu+1, . . . , bw)

Note, that b denotes a block, i.e. an operator or a term. Because TRS1 is not
confluent we have to specify the order of application. We always apply the first
rewriting before the second one if both rewritings are applicable.

Example 4. Let b1, b
′
1, . . . , bn, b′n denote references for activity occurrences b1, . . . ,

bn. Given the model: P(S(b1, b2, b3, b4),S(b′1, b
′
2, b5, b6),S(b7, b

′
5, b

′
6)) Applying

TRS1 produces: P(S(b1, b2,P(S(b3, b4),S(b5, b6))),S(b7, b
′
5, b

′
6))

Up to now we have mined models from a retrospective perspective. Actually,
we want workflow models in order to prescribe the order of executing activities.
Therefore, we make a shift from the retrospective perspective to an anticipatory
perspective at this point. We do so by splitting the overall Alternative operator



of M(L(p)) into partial Alternative operators, and moving any of these operators
to its very latest possible position in its model. For this purpose only, we use the
left distributivity of the Alternative operator over the Sequence operator.

We use the following term rewriting system TRS2 based on the left and
right distributivity of the Alternative operator over the Sequence operator and
the Parallel operator.

A(S(b1, . . . , bu, bu+1, . . . , bv), . . . ,S(b1, . . . , bu, b′u+1, . . . , bw)) →
S(b1, . . . , bu,A(S(bu+1, . . . , bv), . . . ,S(b′u+1, . . . , b

′
w))

A(S(b′1, . . . , b
′
u, bu+1, . . . , bv), . . . ,S(b′1, . . . , b

′
u, bu+1, . . . , bw)) →

S(A(S(b1, . . . , bu), . . . ,S(b′1, . . . , b
′
u), bu+1, . . . , bw)

A(P(b1, . . . , bu), . . . ,P(b′1, . . . , b
′
u),P(bv, . . . , bw), . . . ,P(bx, . . . , by)) →

P(b1, . . . , bu,A(P(bv, . . . , bw), . . . ,P(bx, . . . , by)))

Because TRS2 is not confluent we have to specify the order of application of its
rewritings. Again, we apply the left distribution before right distribution. We
use this order because the left distribution has the desired affect of changing
points in time decisions have to be made.

Example 5. Let b1, b
′
1, . . . , bn, b′n denote references for activity occurrences b1, . . . ,

bn. Given the model:A(S(b1, b2, b3, b4, b5),S(b′1, b
′
2, b6, b6),P(b8, b9, b10),P(b′9, b

′
10,

b11)) Applying TRS2 produces: A(S(b1, b2,A(S(b3, b4, b5),S(b6, b7))),P(b9, b10,
A(b8, b11)))

At this point we have mined a workflow model from a workflow log.

5.6 Complete and Minimal Models

We expect our mining procedure to extract models wich are complete and min-
imal. Let us summarize how this is achieved regarding the entire process.

Before we start we eliminate inconsistent traces, i.e. the handling of noise is
considered to be completed before we run the mining procedure. Based on this,
each trace goes into a trace class. In doing so, we ensure that every behavior pre-
sented in the log is taken into account and the resulting model is complete. From
each trace class exactly one precedence relation is separately extracted. Then,
only such precedence relations are merged which differ in eliminated pseudo de-
pendencies. After that, a separate sub-model is extracted from each precedence
relation. The term rewriting operating on this model only permits the merging
of blocks which are embedded in equal contexts.

We stress on separate handling because it is key in order to mine mini-
mal models. For example, let us consider two simple precedence relations R1 =
{(α, a), (a, c), (c, e)} and R2 = {(α, b), (b, c), (c, e)} as extract from a log. In case
that we process R1 ∪ R2 instead of processing both relations separately, this
results in a model that introduces the possibility of executing e after a and c
were executed. But this execution sequence is never found in the log. With our



approach the model A(S(a, c, e),S(b, c, d)) is constructed. Note that there is no
term rewriting or any other transformation that adulterates the sequences.

In case that there are non-desired paths in a model these can be eliminated
in the subsequent evaluation stage of the KDD process. For example, such paths
may base on very few traces and therefore considered to be irrelevant exceptions.
Also, such paths can represent valuable process knowledge. However, the decision
about that is not subject to a mining procedure. It is subject to a subsequent
model evaluation performed by a user.

6 Engineering the Output

The process mining output comes in form of workflow models based on the meta-
model described above. At this point we want to transform these models into
models applicable in different workflow systems. A common format for exchang-
ing models between different workflow systems is the WfMC Interface 1: Process
Definition Interchange[2]. This interface includes a common meta-model for de-
scribing process definitions and a textual grammar for the interchange of process
definitions, called Workflow Process Definition Language (WPDL). Also, there
is a XML version of this language, called XPDL. In order to deploy our models
to different workflow systems we can transform them into WPDL-models.

There is a structural difference between our models and WPDL-models in the
sense that is WPDL does not support activity occurrence references. Therefore, it
is necessary to first insert an additional synchronization of multiple references of
the same activity occurrence which are embedded in multiple parallel operators.
For this purpose, we expand each reference of an activity occurrence for which
there are more than one references embedded in a parallel operator, such that
each of these parallel operators contains all such references together. After then,
we apply the term rewriting system TRS1 to the expanded model.

Example 6. Let b1, b
′
1, . . . , bn, b′n denote references for activity occurrences b1, . . . ,

bn. Given the model: P(S(b1, b2,P(b3, b4)),S(b5, b
′
4),S(b6,P(b′4, b7))) Its expanded

form is: P(S(b1, b2,P(b3, b4, b7)),S(b5,P(b′3, b
′
4, b7),S(b6,P(b′3, b

′
4, b

′
7))) Applying

TRS1 results in: S(P(S(b1, b2), b5, b6),P(b3, b4, b7)) Note, that there is now an
additional synchronization of b4 with b3 and b7.

After this we can transform a model into WPDL. Algorithm 5 performs a
simple transformation.

Algorithm 5. Let b denote a block of a workflow model. Let φ : B → T , where
T = {S,P,A,L,O}, denote a function that returns the type of a Block b. Let
createActivity(T) be a subroutine that creates and writes a WPDL Route Activ-
ity, let createLoopActivity(T) be a subroutine that creates and writes a WPDL
Loop Activity, and let writeActivity(B) denote a subroutine that writes a WPDL
Activity for an activity instance b, where φ(b) = O. Let P, P ′, D denote sets of
WPDL Activities. Let writeTransitions(P, P’) denote a subroutine that writes
WPDL Transitions from all p ∈ P to all p′ ∈ P ′, and let callSelf(B, D) be a
recursive execution of the algorithm. Input: b := M , P := ∅.



If φ(b) = S {
For each b′ embedded in b ordered by S {

P := callSelf(b′, P )
}

Return P
}
If φ(b) = P ∨ φ(b) = A {

D := createActivity(φ(b))
writeTransitions(P,D)
For each b′ embedded in b {

P ′ := P ′ ∪ callSelf(b′, D)
}
D := createActivity(φ(b))
writeTransitions(P ′, D)
Return D

}
If φ(b) = L {

D := createLoopActivity(L)
writeTransitions(P,D)
b′ := the block embedded inside the loop
P := callSelf(b′, D)
writeTransitions(P,D)
Return D

}
If φ(b) = O {

writeActivity(ϕ(b))
writeTransitions(P,ϕ(b))
Return ϕ(b)

}

Besides a transformation of models into WPDL/XPDL, one can provide fur-
ther algorithms for transforming models into proprietary workflow description
languages for particular workflow systems, for example, IBMs Flow Description
Language (FDL) used by IBM MQSeries Workflow.

7 Experimental Evaluation

Our approach is implemented by a tool named Process Miner. It is able to
read traces of a particular process stored in files of a common XML format or
databases and to extract a workflow model based on these traces. The mined
workflow models are represented in a graphical editor. With this editor an user
can edit the model and export it to a workflow management system. Also, mod-
els can be simulated by the tool in order to analyze their performance before
deploying them in a workflow management application.



Using a meta-model that consist of Sequence, Parallel, Loop and Alternative
operators as well as activity occurrence references we have tested the approach
on data from different sources. At the one side we used synthetic data. At the
other side we used event based data produced by IBM MQSeries Workflow.
While executing workflow instances this workflow system logs the events con-
cerning the start and the completion of an activity instance within a particular
process instance. The mined models covered the ones which underlies the process
instances producing the input data.

8 Related Work

Our approach is close related to the work in [3–8].
Mining workflow models was first considered by Agrawal et al. [3, 4]. Their

approach defines a workflow model as a graph supplemented by conditions for
transitions between graph nodes. They divide the mining of workflow models
into two problems. The first one is called graph mining. The approach presents
a solution for this problem in form of an algorithm for extracting a graph from
event-based data. The algorithm is based on the key concepts of defining transi-
tive relations between activities and building a graph from it that is transformed
into its transitive reduction. In contrast to our approach, they consider an ac-
tivity to be atomic and mix different different paths of execution. The second
problem is about supplementing the graph with conditions in order to distin-
guish alternative and parallel splits within a workflow model. This problem is
called condition mining. It is not treated by the approach.

Herbst and Karagiannis deal in their approach with mining workflow models
with non-unique tasks names [5, 6]. The approach consists of two steps. In the
first step, a stochastic task graph is induced from a workflow log. This is done by
using a search procedure which embeds a graph generation algorithm in order
to find a mapping from activity instances to activity nodes in the graph. The
second step transforms the graph into an ADONIS workflow model. This step
is more extensive than the transformation in our approach because stochastic
task graphs do not explicitly outline a synchronization structure, so that this
structure has to be extracted in the second step.

In [7, 8] van der Aalst and Weijters present an approach on mining workflow
nets which is based on counting frequencies of dependencies between activities.
The nodes of a workflow net represent activities found in the workflow log.
Dependencies between the activities are represented by arcs between the appro-
priate nodes. In order to decide whether a dependency is represented by the
workflow net they use heuristic rules in combination with threshold values. In
addition, their approach deals with noisy logs.

There are many similarities between the approaches above and our approach.
We consider our approach to be different by the following facts. First, it aims
to extract the most specific model for a given workflow log. Second, it explicitly
considers time consuming activities instead of atomic activities. Third, it is based



on a block-structured meta-model that can be supplemented with application
specific basic terms and operators.

9 Summary

In this paper we have presented an approach on mining most specific workflow
models from event-based data. We considered process mining a special data
mining that requires the development of an appropriate process meta-model
and the development of algorithms extracting models based on this meta-model
from event based data. According to this we have outlined a block-structured
process meta-model consisting of a set of basic operators and supplemented by
an basic algebra. Based on this meta-model we described our mining process in
detail. In order to deploy mined models we have outlined a simple transformation
of workflow models into a common exchange format. Also, we have outlined an
overview over the experimental evaluation of our approach and related work.
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